Comparison of chemical and microbiological changes during the aerobic composting and vermicomposting of green waste
PLoS ONE, ISSN: 1932-6203, Vol: 13, Issue: 11, Page: e0207494
2018
- 82Citations
- 129Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations82
- Citation Indexes82
- 82
- CrossRef7
- Captures129
- Readers129
- 129
Article Description
This research was conducted to compare chemical and microbiological properties during aerobic composting (AC) and vermicomposting (VC) of green waste. Relative to AC, VC significantly decreased the pH and lignin and cellulose contents, and significantly increased the electrical conductivity and total N and available P contents. For AC, BIrii41_norank (order Myxococcales) was the major bacterial genus at 30 d and again became dominant genus from 90–150 d, with relative abundances of 2.88% and 4.77–5.19%, respectively; at 45 d and 60 d, the dominant bacterial genus was Nitrosomonadaceae_uncultured (order Nitrosomonadales) with relative abundances of 2.83–7.17%. For VC, the dominant bacterial genus was BIrii41_norank (except at 45 d), which accounted for 2.11–7.96% of the total reads. The dominant fungal class was Sordariomycetes in AC (relative abundances 39.2–80.6%) and VC (relative abundances 42.1–69.5%). The abundances of microbial taxa and therefore the bacterial and fungal community structures differed between VC and AC. The quality of the green waste compost product was higher with VC than with AC. These results will also help to achieve further composting technology breakthroughs in reducing the composting time and improving compost quality.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85057209691&origin=inward; http://dx.doi.org/10.1371/journal.pone.0207494; http://www.ncbi.nlm.nih.gov/pubmed/30475832; https://dx.plos.org/10.1371/journal.pone.0207494; https://dx.doi.org/10.1371/journal.pone.0207494; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207494
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know