Spatial heterogeneity and hydrological fluctuations drive bacterioplankton community composition in an Amazon floodplain system
PLoS ONE, ISSN: 1932-6203, Vol: 14, Issue: 8, Page: e0220695
2019
- 16Citations
- 38Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef8
- Captures38
- Readers38
- 38
Article Description
Amazonian floodplains form complex hydrological networks that play relevant roles in global biogeochemical cycles, and bacterial degradation of the organic matter in these systems is key for regional carbon budget. The Amazon undergoes extreme seasonal variations in water level, which produces changes in landscape and diversifies sources of organic inputs into floodplain systems. Although these changes should affect bacterioplankton community composition (BCC), little is known about which factors drive spatial and temporal patterns of bacterioplankton in these Amazonian floodplains. We used high-throughput sequencing (Illumina MiSeq) of the V3-V4 region of the 16S rRNA gene to investigate spatial and temporal patterns of BCC of two size fractions, and their correlation with environmental variables in an Amazon floodplain lake (Lago Grande do Curuai). We found a high degree of novelty in bacterioplankton, as more than half of operational taxonomic units (OTUs) could not be classified at genus level. Spatial habitat heterogeneity and the flood pulse were the main factors shaping free-living (FL) BCC. The gradient of organic matter from transition zone-lake-Amazon River was the main driver for particle-attached (PA) BCC. The BCC reflected the complexity of the system, with more variation in space than in time, although both factors were important drivers of the BCC in this Amazon floodplain system.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85071282427&origin=inward; http://dx.doi.org/10.1371/journal.pone.0220695; http://www.ncbi.nlm.nih.gov/pubmed/31398199; https://dx.plos.org/10.1371/journal.pone.0220695; https://zenodo.org/record/3749658; https://dx.doi.org/10.1371/journal.pone.0220695; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220695
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know