QRStree: A prefix tree-based model to fetal QRS complexes detection
PLoS ONE, ISSN: 1932-6203, Vol: 14, Issue: 10, Page: e0223057
2019
- 8Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Non-invasive fetal electrocardiography (NI-FECG) plays an important role in fetal heart rate (FHR) measurement during the pregnancy. However, despite the large number of methods that have been proposed for adult ECG signal processing, the analysis of NI-FECG remains challenging and largely unexplored. In this study, we propose a prefix tree-based framework, called QRStree, for FHR measurement directly from the abdominal ECG (AECG). The procedure is composed of three stages: Firstly, a preprocessing stage is employed for noise elimination. Secondly, the proposed prefix tree-based method is used for fetal QRS complexes (FQRS) detection. Finally, a correction stage is applied for false positive and false negative correction. The novelty of the framework relies on using the range of FHR to establish the connections between the FQRS. The consecutive FQRS can be considered as strings composed of alphabet items, thus we can use the prefix tree to store them. A vertex of the tree contains an alphabet, thus a path of the tree gives a string. Such that, by storing the connections of the FQRS into the prefix tree structure, the problem of FQRS detection converts to a problem of optimal path selection. Specifically, after selecting the optimal path of the tree, the nodes in the optimal path are collected as detected FQRS. Since the prefix tree can cover every possible combination of the FQRS candidates, it has the potential to reduce the occurrence of miss detections. Results on two different databases show that the proposed method is effective in FHR measurement from single-channel AECG. The focus on single-channel FHR measurement facilitates the long-term monitoring for healthcare at home.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85072807491&origin=inward; http://dx.doi.org/10.1371/journal.pone.0223057; http://www.ncbi.nlm.nih.gov/pubmed/31574123; https://dx.plos.org/10.1371/journal.pone.0223057; https://dx.doi.org/10.1371/journal.pone.0223057; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223057
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know