PlumX Metrics
Embed PlumX Metrics

A performance comparison of eight commercially available automatic classifiers for facial affect recognition

PLoS ONE, ISSN: 1932-6203, Vol: 15, Issue: 4, Page: e0231968
2020
  • 118
    Citations
  • 0
    Usage
  • 142
    Captures
  • 3
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    118
    • Citation Indexes
      114
    • Policy Citations
      3
      • Policy Citation
        3
    • Clinical Citations
      1
      • PubMed Guidelines
        1
  • Captures
    142
  • Mentions
    3
    • News Mentions
      3
      • News
        3

Most Recent News

Human super-recognizers see faces better than AI

Randal Reid was arrested by Georgia police on Thanksgiving last year as he was headed to a celebration with his mother. Reid, who is Black,

Article Description

In the wake of rapid advances in automatic affect analysis, commercial automatic classifiers for facial affect recognition have attracted considerable attention in recent years. While several options now exist to analyze dynamic video data, less is known about the relative performance of these classifiers, in particular when facial expressions are spontaneous rather than posed. In the present work, we tested eight out-of-the-box automatic classifiers, and compared their emotion recognition performance to that of human observers. A total of 937 videos were sampled from two large databases that conveyed the basic six emotions (happiness, sadness, anger, fear, surprise, and disgust) either in posed (BU-4DFE) or spontaneous (UT-Dallas) form. Results revealed a recognition advantage for human observers over automatic classification. Among the eight classifiers, there was considerable variance in recognition accuracy ranging from 48% to 62%. Subsequent analyses per type of expression revealed that performance by the two best performing classifiers approximated those of human observers, suggesting high agreement for posed expressions. However, classification accuracy was consistently lower (although above chance level) for spontaneous affective behavior. The findings indicate potential shortcomings of existing out-of-the-box classifiers for measuring emotions, and highlight the need for more spontaneous facial databases that can act as a benchmark in the training and testing of automatic emotion recognition systems. We further discuss some limitations of analyzing facial expressions that have been recorded in controlled environments.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know