PlumX Metrics
Embed PlumX Metrics

Anisotropic Gaussian kernel adaptive filtering by Lie-group dictionary learning

PLoS ONE, ISSN: 1932-6203, Vol: 15, Issue: 8 August, Page: e0237654
2020
  • 1
    Citations
  • 0
    Usage
  • 11
    Captures
  • 0
    Mentions
  • 60
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The present paper proposes a novel kernel adaptive filtering algorithm, where each Gaussian kernel is parameterized by a center vector and a symmetric positive definite (SPD) precision matrix, which is regarded as a generalization of scalar width parameter. In fact, different from conventional kernel adaptive systems, the proposed filter is structured as a superposition of non-isotropic Gaussian kernels, whose non-isotropy makes the filter more flexible. The adaptation algorithm will search for optimal parameters in a wider parameter space. This generalization brings the need of special treatment of parameters that have a geometric structure. In fact, the main contribution of this paper is to establish update rules for precision matrices on the Lie group of SPD matrices in order to ensure their symmetry and positive-definiteness. The parameters of this filter are adapted on the basis of a least-squares criterion to minimize the filtering error, together with an ℓ-type regularization criterion to avoid overfitting and to prevent the increase of dimensionality of the dictionary. Experimental results confirm the validity of the proposed method.

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85089529370&origin=inward; http://dx.doi.org/10.1371/journal.pone.0237654; http://www.ncbi.nlm.nih.gov/pubmed/32797071; https://dx.plos.org/10.1371/journal.pone.0237654.g009; http://dx.doi.org/10.1371/journal.pone.0237654.g009; https://dx.plos.org/10.1371/journal.pone.0237654.g005; http://dx.doi.org/10.1371/journal.pone.0237654.g005; https://dx.plos.org/10.1371/journal.pone.0237654.g004; http://dx.doi.org/10.1371/journal.pone.0237654.g004; https://dx.plos.org/10.1371/journal.pone.0237654.t001; http://dx.doi.org/10.1371/journal.pone.0237654.t001; https://dx.plos.org/10.1371/journal.pone.0237654; https://dx.plos.org/10.1371/journal.pone.0237654.g008; http://dx.doi.org/10.1371/journal.pone.0237654.g008; https://dx.plos.org/10.1371/journal.pone.0237654.t003; http://dx.doi.org/10.1371/journal.pone.0237654.t003; https://dx.plos.org/10.1371/journal.pone.0237654.g007; http://dx.doi.org/10.1371/journal.pone.0237654.g007; https://dx.plos.org/10.1371/journal.pone.0237654.g006; http://dx.doi.org/10.1371/journal.pone.0237654.g006; https://dx.plos.org/10.1371/journal.pone.0237654.g002; http://dx.doi.org/10.1371/journal.pone.0237654.g002; https://dx.plos.org/10.1371/journal.pone.0237654.t004; http://dx.doi.org/10.1371/journal.pone.0237654.t004; https://dx.plos.org/10.1371/journal.pone.0237654.t002; http://dx.doi.org/10.1371/journal.pone.0237654.t002; https://dx.plos.org/10.1371/journal.pone.0237654.g001; http://dx.doi.org/10.1371/journal.pone.0237654.g001; https://dx.plos.org/10.1371/journal.pone.0237654.g003; http://dx.doi.org/10.1371/journal.pone.0237654.g003; https://dx.doi.org/10.1371/journal.pone.0237654.t003; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.t003; https://dx.doi.org/10.1371/journal.pone.0237654.g004; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g004; https://dx.doi.org/10.1371/journal.pone.0237654.g001; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g001; https://dx.doi.org/10.1371/journal.pone.0237654.g007; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g007; https://dx.doi.org/10.1371/journal.pone.0237654.g003; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g003; https://dx.doi.org/10.1371/journal.pone.0237654.g009; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g009; https://dx.doi.org/10.1371/journal.pone.0237654.g002; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g002; https://dx.doi.org/10.1371/journal.pone.0237654.g005; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g005; https://dx.doi.org/10.1371/journal.pone.0237654.t004; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.t004; https://dx.doi.org/10.1371/journal.pone.0237654.g008; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g008; https://dx.doi.org/10.1371/journal.pone.0237654.g006; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.g006; https://dx.doi.org/10.1371/journal.pone.0237654.t001; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.t001; https://dx.doi.org/10.1371/journal.pone.0237654.t002; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0237654.t002; https://dx.doi.org/10.1371/journal.pone.0237654; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237654; https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0237654&type=printable

Tomoya Wada; Kosuke Fukumori; Toshihisa Tanaka; Simone Fiori; Jie Zhang

Public Library of Science (PLoS)

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Multidisciplinary

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know