Coupling analysis of contra-rotating fan interstage pressure pulsation and blade vibration based on wavelet reconstruction
PLoS ONE, ISSN: 1932-6203, Vol: 16, Issue: 2 February, Page: e0245985
2021
- 2Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In recent years, the flow characteristics research of the interstage region in counter-rotating axial fans in terms of fluid dynamics has attracted much attention. Especially, the dynamic relationship between interstage pressure pulsation and blade vibration in counter-rotating axial fans has not yet been clarified. This paper performs the signal processing method of wavelet decomposition and reconstruction in time-frequency analysis process. Under different flow conditions, weak-coupling numerical simulation program is employed to analyze the fluid-structure coupling interaction between interstage pressure pulsations and blade vibrations in counter-rotating axial fans. The results indicate that the fluid-structure coupling interaction field in the interstage of counter-rotating axial fans mainly excites the first-order vibration of the second-stage blade. At the same time, the consistency between the pulsation frequency and the vibration frequency of the airflow reflects the good coupling property. Two stage blades cut the airflow to cause field changes and airflow pulsation, and then, airflow pulsation causes blades deformation and produces vibrations of the same frequency at the blade. The deformation of the blades, in turn, causes the flow field changes. Rotating stall, vortex movement and breakdown produced low-frequency airflow pulsation and vortex vibration of the blade. Copyright:
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101343301&origin=inward; http://dx.doi.org/10.1371/journal.pone.0245985; http://www.ncbi.nlm.nih.gov/pubmed/33561130; https://dx.plos.org/10.1371/journal.pone.0245985; https://dx.doi.org/10.1371/journal.pone.0245985; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245985
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know