Magnetophoretic and spectral characterization of oxyhemoglobin and deoxyhemoglobin: Chemical versus enzymatic processes
PLoS ONE, ISSN: 1932-6203, Vol: 16, Issue: 9 September, Page: e0257061
2021
- 10Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- Captures24
- Readers24
- 24
Article Description
A new method for hemoglobin (Hb) deoxygenation, in suspension or within red blood cells (RBCs) is described using the commercial enzyme product, EC-Oxyrase®. The enzymatic deoxygenation method has several advantages over established deoxygenation methodologies, such as avoiding side reactions that produce methemoglobin (metHb), thus eliminating the need for an inert deoxygenation gas and airtight vessel, and facilitates easy re-oxygenation of Hb/RBCs by washing with a buffer that contains dissolved oxygen (DO). The UV-visible spectra of deoxyHb and metHb purified from human RBCs using three different preparation methods (sodium dithionite [to produce deoxyHb], sodium nitrite [to produce metHb], and EC-Oxyrase® [to produce deoxyHb]) show the high purity of deoxyHb prepared using EC-Oxyrase® (with little to no metHb or hemichrome production from side reactions). The oxyHb deoxygenation time course of EC-Oxyrase® follows first order reaction kinetics. The paramagnetic characteristics of intracellular Hb in RBCs were compared using Cell Tracking Velocimetry (CTV) for healthy and sickle cell disease (SCD) donors and oxygen equilibrium curves show that the function of healthy RBCs is unchanged after EC-Oxyrase® treatment. The results confirm that this enzymatic approach to deoxygenation produces pure deoxyHb, can be re-oxygenated easily, prepared aerobically and has similar paramagnetic mobility to existing methods of producing deoxyHb and metHb.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85114226129&origin=inward; http://dx.doi.org/10.1371/journal.pone.0257061; http://www.ncbi.nlm.nih.gov/pubmed/34478473; https://dx.plos.org/10.1371/journal.pone.0257061; https://dx.doi.org/10.1371/journal.pone.0257061; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257061
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know