Unveiling the anti-obesity potential of Kemuning (Murraya paniculata): A network pharmacology approach
PLoS ONE, ISSN: 1932-6203, Vol: 19, Issue: 8 August, Page: e0305544
2024
- 1Citations
- 35Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Obesity has become a global issue that affects the emergence of various chronic diseases such as diabetes mellitus, dysplasia, heart disorders, and cancer. In this study, an integration method was developed between the metabolite profile of the active compound of Murraya paniculata and the exploration of the targeting mechanism of adipose tissue using network pharmacology, molecular docking, molecular dynamics simulation, and in vitro tests. Network pharmacology results obtained with the skyline query technique using a block-nested loop (BNL) showed that histone acetyltransferase p300 (EP300), peroxisome proliferator-activated receptor gamma (PPARG), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) are potential targets for treating obesity. Enrichment analysis of these three proteins revealed their association with obesity, thermogenesis, energy metabolism, adipocytokines, fat cell differentiation, and glucose homeostasis. Metabolite profiling of M. paniculata leaves revealed sixteen active compounds, ten of which were selected for molecular docking based on drug-likeness and ADME results. Molecular docking results between PPARG and EP300 with the ten active compounds showed a binding affinity value of ≤ -5.0 kcal/mol in all dockings, indicating strong binding. The stability of the protein-ligand complex resulting from docking was examined using molecular dynamics simulations, and we observed the best average root mean square deviation (RMSD) of 0.99 Å for PPARG with trans-3-indoleacrylic acid, which was lower than with the native ligand BRL (2.02 Å). Furthermore, the RMSD was 2.70 Å for EP300 and the native ligand 99E, and the lowest RMSD with the ligand (1R,9S)-5-[(E)-2-(4-Chlorophenyl) vinyl]-11-(5-pyrimidinylcarbonyl)-7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-6-one was 3.33 Å. The in vitro tests to validate the potential of M. paniculata in treating obesity showed that there was a significant decrease in PPARG and EP300 gene expressions in 3T3-L1 mature adipocytes treated with M. paniculata ethanolic extract starting at concentrations 62.5 μg/ml and 15.625 μg/ml, respectively. These results indicate that M. paniculata can potentially treat obesity by disrupting adipocyte maturation and influencing intracellular lipid metabolism.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85202800799&origin=inward; http://dx.doi.org/10.1371/journal.pone.0305544; http://www.ncbi.nlm.nih.gov/pubmed/39208245; https://dx.plos.org/10.1371/journal.pone.0305544; https://dx.doi.org/10.1371/journal.pone.0305544; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305544
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know