Are haloclines distributional barriers in anchialine ecosystems? Physiological response of cave shrimps to salinity
PLoS ONE, ISSN: 1932-6203, Vol: 19, Issue: 7 July, Page: e0305909
2024
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures13
- Readers13
- 13
Article Description
Anchialine systems are coastal groundwater habitats around the world which host a unique community of cave adapted species (stygobionts). Such communities are expected to be separated by haloclines into either fresh or saline groundwater communities, hence climate changes (e.g., eustatic sea level shifts) and anthropic driven changes (e.g., salinization) may have a great impact on these stygobiont communities. Here we used cave-restricted species of Typhlatya from the Yucatan Peninsula as models to identify physiological capacities that enable the different species to thrive in marine groundwater (T. dzilamensis) or fresh groundwater (T. mitchelli and T. pearsei), and test if their distribution is limited by their salinity tolerance capacity. We used behavior, metabolic rates, indicators of the antioxidant system and cellular damage, and lactate content to evaluate the response of individuals to acute changes in salinity, as a recreation of crossing a halocline in the anchialine systems of the Yucatan Peninsula. Our results show that despite being sister species, some are restricted to the freshwater portion of the groundwater, while others appear to be euryhaline.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199602667&origin=inward; http://dx.doi.org/10.1371/journal.pone.0305909; http://www.ncbi.nlm.nih.gov/pubmed/39052581; https://dx.plos.org/10.1371/journal.pone.0305909; https://dx.doi.org/10.1371/journal.pone.0305909; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305909
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know