Cetylpyridinium chloride inhibits hepatocellular carcinoma growth and metastasis through regulating epithelialmesenchymal transition and apoptosis
PLoS ONE, ISSN: 1932-6203, Vol: 19, Issue: 9 September, Page: e0310391
2024
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- 1
Most Recent News
Beijing Institute of Biotechnology Reports Findings in Liver Cancer (Cetylpyridinium chloride inhibits hepatocellular carcinoma growth and metastasis through regulating epithelial-mesenchymal transition and apoptosis)
2024 OCT 04 (NewsRx) -- By a News Reporter-Staff News Editor at Chemicals & Chemistry Daily Daily -- New research on Oncology - Liver Cancer
Article Description
Hepatocellular carcinoma (HCC) is characterized by a lack of obvious clinical features in the early stages and is likely to progress to advanced HCC. Advanced HCC is a highly malignant tumor. However, there are few treatment options for advanced HCC. Therefore, screening for new drugs that target HCC will provide a new approach to the treatment of HCC. The CCK8 assay was performed to screen compounds inhibiting HCC cell proliferation and to evaluate the IC50 (half-maximal inhibitory concentration) of compounds on cell lines. Colony formation assay was used to determine HCC cell proliferation. The effect of compounds on HCC cell migration and invasion were analyzed using wound healing and transwell assays, respectively. Tumor growth and metastasis were assessed in vivo in a xenograft mouse model. Flow cytometry was carried out to measure apoptotic cells. Reverse transcription and quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot were performed to examine the expression of epithelial-mesenchymal transition (EMT)- and apoptosis-related genes. Through large-scale screening, we have discovered the anti-tumor activity of cetylpyridinium chloride (CPC) against HCC cells. CPC inhibited the proliferation, invasion and metastasis of HCC cells. Cancer cells are more sensitive to CPC than normal cells. CPC suppressed HCC tumor growth and metastasis in vivo. Mechanistically, CPC promoted apoptosis of HCC cells by affecting the expression of apoptosis- related genes, and inhibited HCC invasion and metastasis by suppressing EMT and expression of EMT markers. Our investigation showed that CPC significantly inhibited HCC cell proliferation, invasion and metastasis in vivo and in vitro, by inducing the expression of apoptosis-related genes and inhibiting expression of EMT markers, suggesting that CPC is a potential agent for HCC treatment.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85204438992&origin=inward; http://dx.doi.org/10.1371/journal.pone.0310391; http://www.ncbi.nlm.nih.gov/pubmed/39302935; https://dx.plos.org/10.1371/journal.pone.0310391; https://dx.doi.org/10.1371/journal.pone.0310391; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310391
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know