Sweet enhancers of polymerase chain reaction
PLoS ONE, ISSN: 1932-6203, Vol: 19, Issue: 10 October, Page: e0311939
2024
- 2Citations
- 9Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Hangzhou Normal University Reports Findings in Life Science (Sweet enhancers of polymerase chain reaction)
2024 NOV 07 (NewsRx) -- By a News Reporter-Staff News Editor at Chemicals & Chemistry Daily Daily -- New research on Life Science is the
Article Description
Although faster and powerful, polymerase chain reaction (PCR) often failed to amplify targets efficiently. Numerous PCR enhancers have been used to increase the amplification efficiency of difficult DNA targets. However, there is no systematic comparison of their effects in normal and difficult PCR conditions. In this paper, we have selected nine different PCR enhancers that can promote the PCR amplification efficiency. We have compared their effect in Taq DNA polymerase thermostability, inhibitor resistance, and amplification of various DNA targets. Although the PCR enhancers more or less reduced the amplification efficiency of DNA fragments with moderate GC-content, they were able to improve the amplification efficiency and specificity of GC-rich fragments. Betaine outperformed the other enhancers in amplification of GC-rich DNA fragments, thermostabilizing Taq DNA polymerase, and inhibitor tolerance. Sucrose and trehalose showed similar effect in thermostabilizing Taq DNA polymerase and inhibitor tolerance, while they showed mildest inhibitory effect on normal PCR. For GC-rich region-containing long DNA fragment amplification, 1 M betaine, 0.5 M betaine + 0.2 M sucrose, or 1 M betaine + 0.1 M sucrose can be used to effectively promote the amplification, while keep their negative effect in amplification of normal fragment to a minimal level.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85208165150&origin=inward; http://dx.doi.org/10.1371/journal.pone.0311939; http://www.ncbi.nlm.nih.gov/pubmed/39471151; https://dx.plos.org/10.1371/journal.pone.0311939; https://dx.doi.org/10.1371/journal.pone.0311939; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311939
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know