A new extended Chen distribution for modelling COVID-19 data
PLoS ONE, ISSN: 1932-6203, Vol: 20, Issue: 1 JANUARY, Page: e0316235
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we propose a new flexible statistical distribution, the Topp-Leone Exponentiated Chen distribution, to model real-world data effectively, with a particular focus on COVID-19 data. The motivation behind this study is the need for a more flexible distribution that can capture various hazard rate shapes (e.g., increasing, decreasing, bathtub) and provide better fitting performance compared to existing models such as the Chen and exponentiated Chen distributions. The principal results include the derivation of key statistical properties such as the probability density function, cumulative distribution function, moments, hazard rate function, and order statistics. Maximum likelihood estimation is employed to estimate the parameters of the TLEC distribution, and simulation studies demonstrate the efficiency of the maximum likelihood method. The innovation of this work is further validated by applying the TLEC distribution to real COVID-19 data, where it outperforms several related models. The study concludes with significant insights into how the TLEC distribution provides a more accurate and flexible approach to modeling real-world phenomena.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85214139663&origin=inward; http://dx.doi.org/10.1371/journal.pone.0316235; http://www.ncbi.nlm.nih.gov/pubmed/39752334; https://dx.plos.org/10.1371/journal.pone.0316235; https://dx.doi.org/10.1371/journal.pone.0316235; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316235
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know