Forward genetic analysis of the apicomplexan cell division cycle in Toxoplasma gondii
PLoS Pathogens, ISSN: 1553-7366, Vol: 4, Issue: 2, Page: e36
2008
- 82Citations
- 87Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations82
- Citation Indexes81
- CrossRef81
- 80
- Policy Citations1
- Policy Citation1
- Captures87
- Readers87
- 87
Article Description
Apicomplexa are obligate intracellular pathogens that have fine-tuned their proliferative strategies to match a large variety of host cells. A critical aspect of this adaptation is a flexible cell cycle that remains poorly understood at the mechanistic level. Here we describe a forward genetic dissection of the apicomplexan cell cycle using the Toxoplasma model. By high-throughput screening, we have isolated 165 temperature sensitive parasite growth mutants. Phenotypic analysis of these mutants suggests regulated progression through the parasite cell cycle with defined phases and checkpoints. These analyses also highlight the critical importance of the peculiar intranuclear spindle as the physical hub of cell cycle regulation. To link these phenotypes to parasite genes, we have developed a robust complementation system based on a genomic cosmid library. Using this approach, we have so far complemented 22 temperature sensitive mutants and identified 18 candidate loci, eight of which were independently confirmed using a set of sequenced and arrayed cosmids. For three of these loci we have identified the mutant allele. The genes identified include regulators of spindle formation, nuclear trafficking, and protein degradation. The genetic approach described here should be widely applicable to numerous essential aspects of parasite biology. © 2008 Gubbels et al.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=40549085402&origin=inward; http://dx.doi.org/10.1371/journal.ppat.0040036; http://www.ncbi.nlm.nih.gov/pubmed/18282098; https://dx.plos.org/10.1371/journal.ppat.0040036; https://dx.doi.org/10.1371/journal.ppat.0040036; https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.0040036
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know