An Improved YOLO Network for Insulator and Insulator Defect Detection in UAV Images
Photogrammetric Engineering and Remote Sensing, ISSN: 0099-1112, Vol: 90, Issue: 6, Page: 355-361
2024
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The power grid plays a vital role in the construction of livelihood projects by transmitting electrical energy. In the event of insulator explosions on power grid towers, these insulators may detach, presenting potential safety risks to transmission lines. The identification of such failures relies on the examination of images captured by unmanned aerial vehicles (UAVs). However, accurately detecting insulator defects remains challenging, particularly when dealing with variations in size. Existing methods exhibit limited accuracy in detecting small objects. In this paper, we propose a novel detection method that incorporates the convolutional block attention module (CBAM) as an attention mechanism into the backbone of the “you only look once” version 5 (YOLOv5) model. Additionally, we integrate a residual structure into the model to learn additional information and features related to insulators, thereby enhancing detection efficiency. Experimental results demonstrate that our proposed method achieved F1 scores of 0.87 for insulator detection and 0.89 for insulator defect detection. The improved YOLOv5 network shows promise in detecting insulators and their defects in UAV images.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85200666868&origin=inward; http://dx.doi.org/10.14358/pers.23-00074r2; https://www.ingentaconnect.com/content/10.14358/PERS.23-00074R2; https://dx.doi.org/10.14358/pers.23-00074r2; https://www.ingentaconnect.com/content/asprs/pers/2024/00000090/00000006/art00009
American Society for Photogrammetry and Remote Sensing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know