Technology Forecasting of Unmanned Aerial Vehicle Technologies through Hierarchical S-Curves
Defence Science Journal, ISSN: 0976-464X, Vol: 72, Issue: 1, Page: 18-29
2022
- 7Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study aims to propose a technology forecasting approach based on hierarchical S-curves. The proposed approach uses holistic forecasting by evaluating the S-curves of sub-technologies as well as the main technology under concern. A case study of unmanned aerial vehicle (UAV) technologies is conducted to demonstrate how the proposed approach works in practice. This is the first study that applies hierarchical S-curves to technology forecasting of unmanned aerial vehicle technologies in the literature. The future trend of the UAV technologies is analysed in detail through a hierarchical S-curve approach. Hierarchical S-curves are also utilised to investigate the sub-technologies of the UAV. In addition, the technology development life cycle of technology is assessed by using the three indexes namely, (1) the current technological maturity ratio (TMR), (2) estimating the number of potential patents that could be granted in the future (PPA), and (3) forecasting the expected remaining life (ERL). The results of this study indicate that the UAV technologies and their sub-technologies are at the growth stage in the technology life cycle, and most of the developments in UAV technology will have been completed by 2048. Hence, these technologies can be considered emerging technologies.
Bibliographic Details
Defence Scientific Information and Documentation Centre
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know