Blocking harmful images with a deep learning based next generation firewall
Sigma Journal of Engineering and Natural Sciences, ISSN: 1304-7205, Vol: 42, Issue: 4, Page: 1133-1147
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
There are various blocking and filtering algorithms for protection against harmful contents on the Internet. However, it is impossible to classify particularly the visual contents according to their genres and block them through traditional methods. In order to block the harmful visual contents, such as various advertisements and social media posts, we need to review and classify them as per their contents. Deep learning method is today’s most efficient method to review the visual contents. In this study, only the harmful images were blocked without completely blocking the entire website. Alcoholic drinks were selected as the harmful content data set. For this purpose, a training was provided with 4.6 million images by using CNN (Convolutional Neural Networks) and GoogLeNet architecture. At the end of this training, 97.6469% of accuracy was achieved. F1 score was calculated as 87.75526188% at the end of the test conducted with 154501 images. The images were determined through the network traffic via mitmproxy and classified as harmful or harmless thanks to the trained model, and the filtering process was successfully completed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know