Efficient Betweenness Centrality Computation over Large Heterogeneous Information Networks
Proceedings of the VLDB Endowment, ISSN: 2150-8097, Vol: 17, Issue: 11, Page: 3360-3372
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Betweenness centrality (BC), a classic measure which quantifies the importance of a vertex to act as a communication “bridge" between other vertices in the network, is widely used in many practical applications. With the advent of large heterogeneous information networks (HINs) which contain multiple types of vertices and edges like movie or bibliographic networks, it is essential to study BC computation on HINs. However, existing works about BC mainly focus on homogeneous networks. In this paper, we are the first to study a specific type of vertices’ BC on HINs, e.g., find which vertices with type A are important bridges to the communication between other vertices also with type A? We advocate a meta path based BC framework on HINs and formalize both coarse-grained and fine-grained BC (cBC and fBC) measures under the framework. Wepropose a generalized basic algorithm which can apply to computing not only cBC and fBC but also their variants in more complex cases. We develop several optimization strategies to speed up cBCor fBC computation by network compression and breadth-first search directed acyclic graph (BFS DAG) sharing. Experiments on several real-world HINs show the significance of cBC and fBC, and the effectiveness of our proposed optimization strategies.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know