Transient stability analysis of power grids with admissible and maximal robust positively invariant sets Analyse der transienten Stabilität von Energieversorgungssystemen mittels zulässigen und maximal robust positiv invarianten Mengen
At-Automatisierungstechnik, ISSN: 2196-677X, Vol: 68, Issue: 12, Page: 1011-1021
2020
- 3Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The energy transition is causing many stability-related challenges for power systems. Transient stability refers to the ability of a power grid's bus angles to retain synchronism after the occurrence of a major fault. In this paper a set-based approach is presented to assess the transient stability of power systems. The approach is based on the theory of barriers, to obtain an exact description of the boundaries of admissible sets and maximal robust positively invariant sets, respectively. We decompose a power system into generator and load components, replace couplings with bounded disturbances and obtain the sets for each component separately. From this we deduce transient stability properties for the entire system. We demonstrate the results of our approach through an example of one machine connected to one load and a multi-machine system.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know