Towards privacy-preserving cooperative control via encrypted distributed optimization
At-Automatisierungstechnik, ISSN: 2196-677X, Vol: 71, Issue: 9, Page: 736-747
2023
- 2Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
Article Description
Cooperative control is crucial for the effective operation of dynamical multi-agent systems. Especially for distributed control schemes, it is essential to exchange data between the agents. This becomes a privacy threat if the data are sensitive. Encrypted control has shown the potential to address this risk and ensure confidentiality. However, existing approaches mainly focus on cloud-based control and distributed schemes are restrictive. In this paper, we present a novel privacy-preserving cooperative control scheme based on encrypted distributed optimization. More precisely, we focus on a secure distributed solution of a general consensus problem, which has manifold applications in cooperative control, by means of the alternating direction method of multipliers (ADMM). As a unique feature of our approach, we explicitly take into account the common situation that local decision variables contain copies of quantities associated with neighboring agents and ensure the neighbor's privacy. We show the effectiveness of our method based on a numerical case study dealing with the formation of mobile robots.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know