The impact of water on the ambivalent behavior and paradoxical phenomenon of the amyloid-β fibril protein
Biomolecular Concepts, ISSN: 1868-503X, Vol: 8, Issue: 5-6, Page: 213-220
2017
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
The crucial role of water in amyloid-β(Aβ) fibril proteins is evaluated in several ways including the water's thermodynamic and kinetic solvation effects. As regards the water's character, its hindered-rotation barriers are also considered. The following protein molecules considered here are: the Aβ (PDB ID: 2LMN), Aβ (PDB ID: 5KK3 and 2NAO) and the double-layered Aβ fibril. We discuss: (i) extracellular Aβ and Aβ fibril monomers exhibit an ambivalent propensity to transform into a helical form toward the N-term region and a β-strand-like form near the C-terminal; (ii) interfacial water molecules play a crucial role in protein-protein interactions, as molecular dynamics simulations have shown a significant impact on the protein-protein binding; (iii) it is shown that the spontaneous dimerization process of the Aβ fibril protein in water occurs via a two-step nucleation-accommodation mechanism; (iv) MD simulations of the double-layered Aβ fibril model show that the C↔C interface appears more energetically favorable than the N↔N interface due to large hydrophobic contacts; (v) the water's role in the HET-s prion and in the Aβ fibrillar aggregates; (vi) it was found that the monomer-oligomer equilibrium spontaneously dissociates into stable monomeric species when they are incubated up to 3 μm for a longer time (>1 week) in a physiological buffer.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know