Dead zone for hydrogenation of propylene reaction carried out on commercial catalyst pellets
Open Chemistry, ISSN: 2391-5420, Vol: 17, Issue: 1, Page: 295-301
2019
- 12Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Heterogeneous catalytic processes have for years been of crucial importance in the chemical industry, while biocatalitic processes have become more and more important. For both types of the processes the existence of zones without reactants were reported. Despite the fact that the dead zone can appear in real processes relatively often, the most important problem in practice is the real size of a dead zone inside a catalyst pellet or the real depth of penetration reagents in a biofilm and this is still unsolved. The knowledge of the parameters and some information about the process can allow improvement in yield, and selectivity, reduce consumption of catalyst by reducing the bed size etc. Presented in this work is a simple method of predicting the size of the inactive core of a uniformly activated catalyst pellet. The method is based on a simple mathematical model of catalyst pellet with inactive pellet centre and experimental investigations.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85067546808&origin=inward; http://dx.doi.org/10.1515/chem-2019-0037; https://www.degruyter.com/document/doi/10.1515/chem-2019-0037/html; https://www.degruyter.com/downloadpdf/journals/chem/17/1/article-p295.xml; https://www.degruyter.com/view/journals/chem/17/1/article-p295.xml
Walter de Gruyter GmbH
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know