Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
Chemical Papers, ISSN: 1336-9075, Vol: 70, Issue: 5, Page: i-x
2016
- 2Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The influence of the chemical modification of carbon nanotubes on the mechanical, thermal and electrical properties of poly(butylene terephthalate)-based composites was investigated. Polymer composites based on poly(butylene terephthalate) were obtained via in situ polymerisation or extrusion. Commercially available multi-walled carbon nanotubes (Nanocyl NC7000) at different loadings (mass %: 0.05, 0.25, 1, 2) were used as fillers. The functionalisation process took place under a chlorine atmosphere followed by a reaction with sodium hydroxide. The effect of carbon nanotube modification was analysed according to the changes in the polymer thermal and mechanical properties. An addition of modified carbon nanotubes in the amount of 0.05 mass % improved the mechanical properties of the composites in terms of both Young's modulus and tensile strength by 5-10 % and 17-30 % compared with composites with unmodified carbon nanotubes and neat poly(butylene terephthalate), respectively. The in situ method of composite preparation was a more effective technique for enhancing the matrix-filler interactions, although a significantly lower amount of fillers were used than in the extrusion method.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84959018916&origin=inward; http://dx.doi.org/10.1515/chempap-2016-0007; https://www.degruyter.com/document/doi/10.1515/chempap-2016-0007/html; http://www.degruyter.com/view/j/chempap.2016.70.issue-6/chempap-2016-0007/chempap-2016-0007.xml; https://www.degruyter.com/view/j/chempap.2016.70.issue-6/chempap-2016-0007/chempap-2016-0007.xml
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know