An exact realization of a modified hilbert transformation for space-time methods for parabolic evolution equations
Computational Methods in Applied Mathematics, ISSN: 1609-9389, Vol: 21, Issue: 2, Page: 479-496
2021
- 12Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We present different possibilities of realizing a modified Hilbert type transformation as it is used for Galerkin–Bubnov discretizations of space-time variational formulations for parabolic evolution equations in anisotropic Sobolev spaces of spatial order 1 and temporal order . First, we investigate the series expansion of the definition of the modified Hilbert transformation, where the truncation parameter has to be adapted to the mesh size. Second, we introduce a new series expansion based on the Legendre chi function to calculate the corresponding matrices for piecewise polynomial functions. With this new procedure, the matrix entries for a space-time finite element method for parabolic evolution equations are computable to machine precision independently of the mesh size. Numerical results conclude this work.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know