Research on microscopic structure-activity relationship of AP particle-matrix interface in HTPB propellant
E-Polymers, ISSN: 1618-7229, Vol: 24, Issue: 1
2024
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Researchers from Rocket Force University of Engineering Publish Findings in Polymer Science (Research on microscopic structure-activity relationship of AP particle-matrix interface in HTPB propellant)
2024 OCT 28 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Investigators discuss new findings in polymer science. According to
Article Description
The matrix and particle interface of hydroxyl-terminated polybutadiene (HTPB) propellant is the weakest part of its mechanical properties, making it prone to dewetting damage and destroying the structural integrity of the propellant. This article uses nano-indentation, gas cluster ion beam etching, and X-ray photoelectron spectroscopy experimental analyses to study the physicochemical properties of the interface and subsequently construct a microscopic model for the HTPB matrix and ammonium perchlorate particle interface. The model fully considers the existing forms of curing agent toluene diisocyanate, bonding agent Tris (2-methyl-aziridine) phosphine oxide (MAPO), and the aging products of the propellant in the interface structure. Meanwhile, the physicochemical properties, mechanical properties, and adhesive properties of the interface under different tensile loading conditions were analyzed. The results indicate that the bonding agent MAPO significantly enhances the mechanical and adhesive properties of the interface. The interface is sensitive to changes in temperature and tensile rate, and the aged interface is more fragile.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know