Intelligent Questionnaires Using Approximate Dynamic Programming
i-com, ISSN: 2196-6826, Vol: 19, Issue: 3, Page: 227-237
2021
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Inefficient interaction such as long and/or repetitive questionnaires can be detrimental to user experience, which leads us to investigate the computation of an intelligent questionnaire for a prediction task. Given time and budget constraints (maximum q questions asked), this questionnaire will select adaptively the question sequence based on answers already given. Several use-cases with increased user and customer experience are given. The problem is framed as a Markov Decision Process and solved numerically with approximate dynamic programming, exploiting the hierarchical and episodic structure of the problem. The approach, evaluated on toy models and classic supervised learning datasets, outperforms two baselines: a decision tree with budget constraint and a model with q best features systematically asked. The online problem, quite critical for deployment seems to pose no particular issue, under the right exploration strategy. This setting is quite flexible and can incorporate easily initial available data and grouped questions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know