Bit slicing approaches for variability aware ReRAM CIM macros
IT - Information Technology, ISSN: 2196-7032, Vol: 65, Issue: 1-2, Page: 3-12
2023
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Computation-in-Memory accelerators based on resistive switching devices represent a promising approach to realize future information processing systems. These architectures promise orders of magnitudes lower energy consumption for certain tasks, while also achieving higher throughputs than other special purpose hardware such as GPUs, due to their analog computation nature. Due to device variability issues, however, a single resistive switching cell usually does not achieve the resolution required for the considered applications. To overcome this challenge, many of the proposed architectures use an approach called bit slicing, where generally multiple low-resolution components are combined to realize higher resolution blocks. In this paper, we will present an analog accelerator architecture on the circuit level, which can be used to perform Vector-Matrix-Multiplications or Matrix-Matrix-Multiplications. The architecture consists of the 1T1R crossbar array, the optimized select circuitry and an ADC. The components are designed to handle the variability of the resistive switching cells, which is verified through our verified and physical compact model. We then use this architecture to compare different bit slicing approaches and discuss their tradeoffs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know