PlumX Metrics
Embed PlumX Metrics

Thermodynamic costs of temperature stabilization in logically irreversible computation

Journal of Non-Equilibrium Thermodynamics, ISSN: 1437-4358, Vol: 49, Issue: 2, Page: 115-123
2024
  • 1
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

In recent years, great efforts are devoted to reducing the work cost of the bit operation, but it is still unclear whether these efforts are sufficient for resolving the temperature stabilization problem in computation. By combining information thermodynamics and a generalized constitutive model which can describe Fourier heat conduction as well as non-Fourier heat transport with nonlocal effects, we here unveil two types of the thermodynamic costs in the temperature stabilization problem. Each type imposes an upper bound on the amount of bits operated per unit time per unit volume, which will eventually limit the speed of the bit operation. The first type arises from the first and second laws of thermodynamics, which is independent of the boundary condition and can be circumvented in Fourier heat conduction. The other type is traceable to the third law of thermodynamics, which will vary with the boundary condition and is ineluctable in Fourier heat conduction. These thermodynamic costs show that reducing the work cost of the bit operation is insufficient for resolving the temperature stabilization problem in computation unless the work cost vanishes.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know