Fracture characteristics of various concrete composites containing polypropylene fibers through five fracture mechanics methods
Materialpruefung/Materials Testing, ISSN: 0025-5300, Vol: 65, Issue: 1, Page: 10-32
2023
- 3Citations
- 10Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports from Ferdowsi University of Mashhad Describe Recent Advances in Materials Testing (Fracture characteristics of various concrete composites containing polypropylene fibers through five fracture mechanics methods)
2023 JAN 24 (NewsRx) -- By a News Reporter-Staff News Editor at Tech Daily News -- Fresh data on materials testing are presented in a
Article Description
This paper investigates and compares the experimental results of fracture characteristics in various polypropylene fiber-reinforced concretes (high strength concrete, lightweight concrete, and engineered cementitious composite) on 90 three-point bend (notched and un-notched) beams. Five widely used fracture mechanics testing methods, such as work of fracture method, stress-displacement curve method, size effect method, J integral method, and ASTM E399, were used to investigate the fracture behavior. Results have demonstrated that fracture energy and fracture toughness improved as the dosage of polypropylene fibers increased in concretes. However, this improvement was different in concretes owing to various results of fracture mechanics testing methods and different properties of each concrete. Aggregates played significant role in the performance of polypropylene fibers on the fracture behavior of concretes. Among testing methods, the ASTM E399 showed the lowest values for the fracture toughness of concretes. Both work of fracture and stress-displacement curve methods exhibited appropriate results for the fracture energy of polypropylene fiber-reinforced concrete composites. The accuracy of size effect method was acceptable for determining size-independent fracture parameters of plain high strength and lightweight concretes. Furthermore, the J integral method showed more relevant results for the fracture toughness of polypropylene fiber-reinforced engineered cementitious composite.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know