Influence of the chemical structure of cross-linking agents on properties of thermally reversible networks
Pure and Applied Chemistry, ISSN: 1365-3075, Vol: 88, Issue: 12, Page: 1103-1116
2016
- 18Citations
- 42Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
It is well-known that the properties of cross-linked rubbers are strongly affected by the cross-link density. In this work it is shown that for thermoreversibly cross-linked elastomers, the type and length of the cross-linker also have a significant effect. A homologous series of diamine and bismaleimide cross-linkers was used to cross-link maleic-anhydride-grafted EPM irreversibly and furan-modified EPM thermoreversibly, respectively. Bismaleimide cross-linkers with a polarity close to that of EPM and a relatively low melting point have a better solubility in the rubber matrix, which results in higher chemical conversion and, thus, higher cross-link densities at the same molar amount of cross-linker. Samples cross-linked with different spacers (aromatic and aliphatic spacers of different lengths) were compared at the same cross-link density to interpret the effects on the material properties. The rigid character of the short aliphatic and the aromatic cross-linkers accounts for the observed increase in hardness, Young's modulus and tensile strength with respect to the longer, more flexible aliphatic cross-linkers. In conclusion, the structure of the cross-linking agent can be considered as an alternative variable in tuning the rubber properties, especially for thermoreversibly cross-linked rubber.
Bibliographic Details
Walter de Gruyter GmbH
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know