Effects of enzyme-assisted ultrasonic treatment to the properties of nanofibrils isolated from wheat straw
Journal of Polymer Engineering, ISSN: 0334-6447, Vol: 42, Issue: 10, Page: 957-965
2022
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study aimed to prepare cellulose nanofibrils (CNF) with tunable morphology and properties from wheat straw using enzyme-assisted ultrasonic treatment. The effects of different enzymatic hydrolysis duration on the morphology and the properties of the CNF were studied. The effects of different enzymatic hydrolysis duration on the morphology and the properties of the CNF were studied. AFM analysis showed that average height distribution for CNF-0 (without enzymatic pretreatment) decreased from 11.86 to 8.18 nm for CNF-4 (with the enzymatic hydrolysis duration of 4 h), while the crystallinity and water reserve value (WRV) for CNF-0 increased from 36 and 485% to 47 and 789% for CNF-4, respectively. The transmittance, wettability properties, and mechanical performances of CNF-based films were systematically studied. The results show that the film properties are highly dependent on the morphology of their corresponding CNF and can be effectively modulated by controlling the structural characteristics of CNF. The discoveries of this study provide an environment-friendly approach for the production of CNF with tunable morphology and fibril size, which can promote the production of cellulose-based nanomaterial as well as their related applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know