X-ray absorption spectroscopy principles and practical use in materials analysis
Physical Sciences Reviews, ISSN: 2365-659X, Vol: 5, Issue: 4
2020
- 14Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The X-ray Absorption Fine Structure (XAFS) with its subregions X-ray Absorption Near-edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for the structural analysis of materials, which is nowadays a standard component of research strategies in many fields. This review covers a wide range of topics related to its measurement and use: the origin of the fine structure, its analytical potential, derived from the physical basis, the environment for measuring XAFS at synchrotrons, including different measurement geometries, detection modes, and sample environments, e. g. for in-situ and operando work, the principles of data reduction, analysis, and interpretation, and a perspective on new methods for structure analysis combining X-ray absorption with X-ray emission. Examples for the application of XAFS have been selected from work with heterogeneous catalysts with the intention to demonstrate the strength of the method providing structural information about highly disperse and disordered systems, to illustrate pitfalls in the interpretation of results (e. g. by neglecting the averaged character of the information obtained) and to show how its merits can be further enhanced by combination with other methods of structural analysis and/or spectroscopy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85082070064&origin=inward; http://dx.doi.org/10.1515/psr-2017-0181; https://www.degruyter.com/document/doi/10.1515/psr-2017-0181/html; https://www.degruyter.com/downloadpdf/journals/psr/5/4/article-20170181.xml; https://www.degruyter.com/view/journals/psr/5/4/article-20170181.xml
Walter de Gruyter GmbH
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know