Two-phase flow simulation algorithm for numerical estimation of relative phase permeability curves of porous materials
Russian Journal of Numerical Analysis and Mathematical Modelling, ISSN: 1569-3988, Vol: 39, Issue: 4, Page: 209-221
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The paper presents an algorithm for three-dimensional modelling of two-phase flows on the scale of pore size order for numerical evaluation of relative phase permeability curves of porous materials. Such an evaluation is performed based on the results of numerical simulation of primary drainage with subsequent waterflooding. In this case, models of porous materials based on three-dimensional tomographic images of rocks are used. The simulation of the flow considers the Stokes equation and the Cahn–Hilliard equation for modelling phase transfer, which allows us to determine phases using the concentration function. The combination of the phase field method and finite difference method makes it possible to correctly take into account the contact angle and stably calculate surface tension forces in domains with complex topology.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know