Device for the detection of short trace gas pulses
Technisches Messen, ISSN: 2196-7113, Vol: 85, Issue: 7-8, Page: 496-503
2018
- 12Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A device for detection of short gas pulses at very low concentrations is presented. The approach is based on a special temperature modulation technique enabling a differential surface reduction (DSR) measurement of a metal oxide semiconductor (MOS) gas sensor. With this method, the sensor surface is highly covered with oxidized surface states at high temperature (e. g. 400 °C) initially. The temperature is then reduced abruptly to, e. g., 100 °C resulting in a state with strong excess of negative surface charge. Reactions of these surface charges with reducing gases are prevailing and lead to very high sensitivity. For the measurement a dedicated detector (electronics and fluidic system) is presented. The electronics allows a high-resolution conductance measurement of the sensitive layer and accurate temperature control. The fluidic system is examined in terms of peak shape and optimal sensor response via FEM simulations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know