Improving the performance of artificial neural networks trained on synthetic data in gas spectroscopy - A study on two sensing approaches Approaches to overcome data scarcity when utilizing artificial neural networks in quantitative gas analysis
Technisches Messen, ISSN: 2196-7113, Vol: 91, Issue: 1, Page: 4-16
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Artificial neural networks (ANNs) are used in quantitative infrared gas spectroscopy to predict concentrations on multi-component absorption spectra. Training of ANNs requires vast amounts of labelled training data which may be elaborate and time consuming to obtain. Additional data can be gained by the utilization of synthetically generated spectra, but at the cost of systematic deviations to measured data. Here, we present two approaches to train ANNs with a combination of comparatively small, measured data sets and synthetically generated data. For the first approach a neural network is trained hybridly with synthetically generated infrared absorption spectra of mixtures of N2O and CO and measured zero-gas spectra, taken with a mid-infrared dual comb spectrometer. This improves the mean absolute error (MAE) of the network predictions from 0.46 to 0.01ppmV and 0.24 to 0.01ppmV for the concentration predictions of N2O and CO respectively for zero-gas measurements which was previously observed for training with purely synthetic data. At the same time a similar performance on spectra from gas mixtures of 0-100ppmV N2O and 0 to 60ppmV CO was achieved. For the second approach an ANN pre-trained on synthetic infrared spectra of mixtures of acetone and ethanol is retrained on a small dataset consisting of 26 spectra taken with a mid-infrared photoacoustic spectrometer. In this case the MAE for the concentration predictions of ethanol and acetone are improved by 45% and 20% in comparison to purely synthetic training. This shows the capability of using synthetically generated data to train ANNs in combination with small amounts of measured data to further improve neural networks for gas sensing and the transferability between different sensing approaches.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know