An Improved Ping-Pong Protocol Using Three-Qubit Nonmaximally Nonorthogonal Entangled States
Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, ISSN: 1865-7109, Vol: 74, Issue: 9, Page: 799-811
2019
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
We analyse the ping-pong (PP) protocol [K. Bostrom and T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002)] using different sets of partially entangled three-qubit states. Interestingly, our results show that the partially entangled nonorthogonal three-qubit states are more useful as resources in comparison to three-qubit maximally entangled Greenberger-Horne-Zeilinger (GHZ) states. The properties of orthogonal set of partially entangled states as resources for PP protocol, however, are similar to that of maximally entangled GHZ states - both the states are not preferable due to the vulnerability towards eavesdropping. On the other hand, partially entangled nonorthogonal basis set holds importance for transferring two-bit information, one each from a sender, to a single receiver. The protocol is further analysed for various eavesdropping attacks, and the results are compared with the use of two shared Bell pairs for two-bit information transfer. Surprisingly, the use of partially entangled nonorthogonal set of states is found to offer better qubit efficiency and increased security, as against the use of two separate maximally entangled Bell states with orthogonal basis. In addition, we also propose a mixed-state sharing protocol to further enhance the security of the PP protocol.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know