Therapeutic potential of complement inhibitors in myocardial ischaemia
Expert Opinion on Investigational Drugs, ISSN: 1354-3784, Vol: 9, Issue: 5, Page: 975-991
2000
- 16Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- CrossRef16
- 16
- Captures2
- Readers2
Review Description
Under normal conditions, the complement system functions to eradicate microbes and other membrane bound pathogens. In other situations, complement activation comprises a pivotal mechanism for mediating tissue demolition in inflammatory disorders, including ischaemia/reperfusion injury. Complement-mediated tissue damage has long been recognised as a significant contributor to myocardial reperfusion injury. However, clinical use of complement inhibitors to reduce the extent of irreversible tissue injury related to reperfusion, remains in the early stages of development. Activation of the complement system generates anaphylatoxins, opsonins and the lytic moiety known as the membrane attack complex (MAC). In addition, fragments of the complement cascade proteins (e.g., C3a and C5a) secondarily initiate processes deleterious to myocytes by recruiting and stimulating inflammatory cells, such as neutrophils and macrophages, within the area of reperfusion. Damaged tissue itself, is capable of upregulating the genes that encode the formation of complement proteins leading to assembly of the MAC, which in turn further advances tissue injury. All of these factors contribute to the development of myocardial infarction subsequent to ischaemia and reperfusion. This paper provides an overview of how the complement system operates and examines the various inhibitors, both endogenous and exogenous, that regulate the complement cascade. Activation and inhibition of the complement system will be discussed primarily in the context of myocardial ischaemia and reperfusion injury.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know