GraphITE: Estimating Individual Effects of Graph-structured Treatments
Transactions of the Japanese Society for Artificial Intelligence, ISSN: 1346-8030, Vol: 37, Issue: 6, Page: D-M73_1-11
2022
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Outcome estimation of treatments for individual targets is a crucial foundation for decision making based on causal relations. Most of the existing outcome estimation methods deal with binary or multiple-choice treatments; however, in some applications, the number of interventions can be very large, while the treatments themselves have rich information. In this study, we consider one important instance of such cases, that is, the outcome estimation problem of graph-structured treatments such as drugs. Due to the large number of possible interventions, the coun-terfactual nature of observational data, which appears in conventional treatment effect estimation, becomes a more serious issue in this problem. Our proposed method GraphITE (pronounced ‘graphite’) obtains the representations of the graph-structured treatments using graph neural networks, and also mitigates the observation biases by using the HSIC regularization that increases the independence of the representations of the targets and the treatments. In con-trast with the existing methods, which cannot deal with “zero-shot” treatments that are not included in observational data, GraphITE can efficiently handle them thanks to its capability of incorporating graph-structured treatments. The experiments using the two real-world datasets show GraphITE outperforms baselines especially in cases with a large number of treatments.
Bibliographic Details
Japanese Society for Artificial Intelligence
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know