Mathematical modeling of the process of obtaining coagulant by electrocoagulation method
Technical Electrodynamics, ISSN: 2218-1903, Vol: 2019, Issue: 4, Page: 77-84
2019
- 2Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper presents an approach to modeling the electrocoagulation process based on the generalization of the equations of motion of an incompressible fluid between electrodes in nonisothermal conditions taking into account the ratio between the values of the parameters which characterize the domination of convective and mass-exchange components of the process over diffusion. An asymptotic approximation of solutions of corresponding boundary value problems is constructed. Based on the found solutions, it was conducted a computer simulation of the distribution of iron concentration inside the rector that allows predicting various hydrodynamic phenomena such as internal recirculation and dead zones that affects the formation of a coagulant. In this case study, were studied the effect of current strength on the concentration of the target component at the exit from the electrocoagulator using the developed mathematical model. The study tested the influence of the rate of heat formation from electrode heating on the efficiency of obtaining of coagulant.
Bibliographic Details
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know