DEFORMATION AND THE STRUCTURE OF CARTILAGE TISSUE
Ukrainian Journal of Physics, ISSN: 2071-0194, Vol: 69, Issue: 5, Page: 329-335
2024
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
We propose a model of the structure of cartilage tissue which is considered as a set of local equilibrium regions. Every region is a lattice formed by plates (proteoglycan aggregates) and collagen fibers. A deformation of cartilage tissue under the action of an external load mainly occurs through the bending of chains entering the content of proteoglycan aggregates. Formulas for the shear and Young’s moduli of cartilage tissue have been derived. It is shown that these parameters are reciprocal to the square of the collagen fiber diameter, and their values are equal to 10 Pa by order of magnitude, which agrees with experimental data.
Bibliographic Details
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know