Modification technology of montmorillonite by polyionenes
Journal of Chemistry and Technologies, ISSN: 2663-2942, Vol: 26, Issue: 1, Page: 1-8
2018
- 2Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Technology of obtaining montmorillonite modified by polyionenes is developed. Macromolecular polymer intercalation of a quaternary ammonium salt of montmorillonite intercrystalline space is shown to be accompanied with increased interlayer distances from 1.08 nm to 1.67 nm. The technique of synthesis of montmorillonite modified by polyionenes is suggested. Optimal conditions for sorption of polyionenes molecules with montmorillonite are found to be: the concentration of aqueous dispersion of montmorillonite is 1 %, the temperature of the reaction medium is 40 °C, the montmorillonite-polyionene ratio is 3: 1, the processing time is 24 hours. The mechanism of montmorillonite modification is suggested to involve the next steps: connection of organic cations to montmorillonite surface determined by attachment of organic cations to exchange position during ion-exchange adsorption and adsorption of organic cations with acid sylanol groups, i.e. torn bonds on crystal faces. These processes are shown to result in more perfect structure by organic cations adsorption with acid sylanol groups (torn bonds on crystal faces).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know