Estimación de modelos de volatilidad estocástica vía filtro auxiliar de partículas
Revista de Matemática Teoría y Aplicaciones, ISSN: 1409-2433, Vol: 26, Issue: 1, Page: 45-81
2019
- 467Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Resumen [16] El creciente interés en el estudio de la volatilidad para series de instru- mentos financieros nos lleva a plantear una metodología basada en la ver- satilidad de los métodos Monte Carlo Secuencial (MCS) para la estimación de los estados del modelo de volatilidad estocástica general (MVEG). En este trabajo se propone una metodología basada en la estructura espacio estado aplicando técnicas de filtrado como es el caso del filtro auxiliar de partículas para la estimación de la volatilidad subyacente del sistema. Adi- cionalmente, se propone utilizar un algoritmo Monte Carlo por cadenas de Markov (MCMC), como es el muestreador de Gibbs para la estimación de los parámetros. La metodología es ilustrada usando una serie de re- tornos de datos simulados, y la serie de retornos correspondiente al índice de precio Standard and Poor’s 500 (S&P 500) para el periodo 1995 2003. Los resultados evidencian que la metodología propuesta permite explicar adecuadamente la dinámica de la volatilidad cuando existe una respuesta asimétrica de esta ante un shock de diferente signo, concluyendo que los cambios bruscos en los retornos corresponden a valores altos en la volati- lidad.
Bibliographic Details
http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332019000100045&lng=en&tlng=en; http://www.scielo.sa.cr/scielo.php?script=sci_abstract&pid=S1409-24332019000100045&lng=en&tlng=en; http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332019000100045; http://www.scielo.sa.cr/scielo.php?script=sci_abstract&pid=S1409-24332019000100045; http://dx.doi.org/10.15517/rmta.v26i1.35518
Publicación del Centro de Investigaciones en Matemática Pura y Aplicada (CIMPA)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know