Ring formation in clonal plants
Community Ecology, ISSN: 1588-2756, Vol: 15, Issue: 1, Page: 77-86
2014
- 39Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Ring shaped patches of clonal plants fascinated plant ecologists since long time. In this work we review the reports on the occurrence of ring pattern in different environmental conditions, the growth forms of ring-forming plants, the mechanisms underlying ring formation, and the consequences for species diversity at community scale. Rings formed by 83 species of clonal vascular plants have been found in grasslands, deserts, bare substrates of lava flow, harvested peat lands, salt marshes, and sand dunes. Four causal hypotheses have been proposed for the emergence of ring patterns: i. occurrence of architectural constraints for ramets development; ii. induction by fire, drought, trampling or overgrazing; iii. nutrient and water depletion by competition inside the ring; and iv. onset of species-specific negative plant-soil feedback in the inner zone of the clone. Since almost all the available studies are observations of ring structure or modelling exercises, none of the putative mechanisms for ring formation emerged from the literature as either generally applicable or suitable for rejection. Therefore, long-term field experiments are needed to investigate the relative prevalence of different mechanisms in different environments. Ring formation bears important consequences at community scale, because ring forming plants often act as "nurses", enhancing the recruitment and development of different plant species. In fact, ring establishment modifies above-and below-ground environmental conditions, providing specialized safe sites for beneficiaries in the inner zone of the clones. Such interspecific facilitation by ring forming plants, particularly in chronically stressed environments, contributes to increase plant species richness and can locally promote the successional dynamics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know