Synthesis of urethane base composite materials with metallic nanoparticles
Materials Research Society Symposium Proceedings, ISSN: 0272-9172, Vol: 1547, Page: 141-147
2013
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The antimicrobial properties of polymer materials are used in a verity of applications. Silver nanoparticles are commonly applied to polyurethane foams to obtain antifungal properties. For this study a series of nanocomposites (PU-Ag) from a urethane-type polymer (PU) were reinforced with various amounts of silver nanoparticles having an average size of 20 nm. The surface morphology and antifungal capacity of the nanocomposites were evaluated. As a result, a different surface morphology from PU was found in PU-Ag nanocomposites. The latter nanocomposite showed enhanced thermal and mechanical properties, when compared with the PU without silver nanoaprticles. The nanocomposite also exhibited good antifungal properties that can be used in a variety of applications. © 2013 Materials Research Society.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know