Indentation size effect in magnesium single crystals of different crystallographic orientations
Journal of Materials Research, ISSN: 2044-5326, Vol: 37, Issue: 3, Page: 728-736
2022
- 11Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nanoindentation experiments are performed on magnesium single crystals of three different crystallographic orientations with the maximum penetration depth varied from 500 to 2500 nm. It has been observed that hardness, irrespective of the crystallographic orientation, decreases with increasing penetration depth showing indentation size effect (ISE). The difference in hardness among the different orientations is significant at low penetration depths but decreases with increasing penetration depth. Apart from ISE, the critical load for the first pop-in for different orientations has also been studied and rationalized using Schmid factor calculations. Graphical abstract: [Figure not available: see fulltext.]
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know