Molecular dynamics simulation of tensile deformation behavior of single-crystal Fe–Cr–Al before and after irradiation
Journal of Materials Research, ISSN: 2044-5326, Vol: 38, Issue: 3, Page: 828-840
2023
- 6Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Fe–Cr–Al alloy is one of the candidate materials for reactor fuel cladding due to excellent high-temperature oxidation resistance; however, it has significant irradiation embrittlement and hardening. To understand the effect of Cr and Al and the defects (point defects, clusters, and nanocracks) produced from radiation damage on the mechanical properties, the uniaxial tensile property of single-crystal Fe–Cr–Al is investigated. The results show that, due to the presence of Cr and Al, the phase transformation from body-centered-cubic to face-centered-cubic is impeded and the formation of defects and amorphous structures is promoted, leading to the reduction of Young’s modulus and the ultimate tensile stress. Interstitials are the main factor in Frenkel pairs contributing to the reduction of mechanical properties due to the high shear stress and lattice distortion. The collapse of the nanocrack causes the increase of Young’s modulus and the decrease of the ultimate tensile strength. Graphical abstract: [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know