Atomistic simulations of diffusive phase transformations with non-conservative point defects
MRS Communications, ISSN: 2159-6867, Vol: 12, Issue: 6, Page: 1015-1029
2022
- 5Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Most of the phase transformations modifying the microstructure, thereby the materials properties, are controlled by the diffusion of atoms. The rate but also the selection of phase transformations depend on the concentration of lattice point defects (PDs), because substitutional atoms exchange with PDs to diffuse and PDs are non-conservative species. During manufacturing or in use, whenever PD diffusion and creation/annihilation reactions at extended defects in the microstructure are slower than the kinetics of the microstructure, these PDs may not have their equilibrium concentration. A departure of PDs from local equilibrium can be transient under thermal conditions, or permanent in materials driven out of equilibrium as under irradiation. Non-equilibrium PDs can have a dramatic effect on the evolution of the microstructure or even on the stationary microstructure in driven systems. We present an atomic kinetic Monte Carlo (AKMC) method, which is able to tackle the atomic-scale couplings between PD diffusion, annihilation/creation reactions and the kinetics of decomposition of a solid solution into a two-phase microstructure. By introducing PD source-and-sinks (SAS) at specific lattice sites, we control the PD reactions and highlight the role of non-equilibrium quenched-in point defects on the evolution kinetics of short-range order parameters and subsequent second-phase precipitation. Then, we open the discussion on various kinetic phenomena that require taking into account the role of non-equilibrium PDs at different scales of time and space. Graphical abstract: [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know