Correlation of the Orthogonal Basis of the Core Plasma Distribution to the Divertor Footprint Distribution in LHD
Plasma and Fusion Research, ISSN: 1880-6821, Vol: 18, Issue: 0, Page: 2402021-2402021
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We have applied the multivariable analysis technique called the proper orthogonal decomposition (POD) to both the divertor particle flux distribution and the electron pressure distribution in the core region of LHD. The cross-correlation analysis indicates that 3rd, 4th, and 5th POD modes of the electron pressure distribution are highly correlated with the divertor footprint index which is a measure of where the peak position of the particle flux distribution is located on the inner divertor plate. Both the 3rd and 4th modes seem to correspond to the shift of the electron pressure peak position from the magnetic-axis radius. In contrast, 5th mode has a strong influence on the peripheral gradient of the electron pressure distribution. Their relationships with the divertor footprint could be explained by the finite β and the Pfirsch-Schlüter current effects.
Bibliographic Details
Japan Society of Plasma Science and Nuclear Fusion Research
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know