Experimental Simulation of the Influence of Temperature on the Migration of Substances from Bottom Sediments
Hydrobiological Journal, ISSN: 0018-8166, Vol: 59, Issue: 6, Page: 83-98
2023
- 1Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
The results of experimental investigations of the influence of water temperature on the migration of nutrients, organic matter, and metals from bottom sediments into the aquatic environment are discussed in the paper. It has been found that the increase in water temperature from 5°C to 15°C resulted in the increase in the concentration of inorganic nitrogen, inorganic and total phosphorus, and dissolved silicon respectively by a factor of 1.6, 1.1, 1.2, and 1.4. The increase in water temperature from 5°C to 25°C resulted in the increase in the content of these nutrients by a factor of 1.8, 5.8, 1.9, and 2.5. Water temperature increase influenced the contribution of nitrogen compounds to the total balance of inorganic nitrogen. A relative content of ammonium decreased, whereas the contribution of nitrite- and nitrate ions increased as a result of the process of nitrification. The concentration of readily oxidized organic matter and the total content of organic matter also increased almost by a factor of 1.6 with increasing water temperature from 5°C to 25°C. Under such conditions, the concentration of aluminum, manganese, and chromium increased by a factor of 1.9, 3.2, and 2.0. In this case, the content of iron and copper remained almost unchanged due to their occurrence in inaccessible fractions of bottom sediments. Artificial aeration at 25°C was responsible for an insignificant decrease in the concentration of inorganic nitrogen, inorganic and total phosphorus, dissolved organic matter, and also of dissolved aluminum, manganese, and chromium. It has been found that water temperature increase results in the migration of the studied chemical compounds from bottom sediments. However, this process is not as intensive as, for example, with a deficiency of dissolved oxygen and a decrease in pH and redox potential in the near-bottom layer of water.
Bibliographic Details
Begell House
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know