Non-metallic inclusions in different zones of crystallization of E90KhAF rail steel
Izvestiya Ferrous Metallurgy, ISSN: 2410-2091, Vol: 64, Issue: 2, Page: 135-142
2021
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Metallographic and X-ray studies of continuously cast billets of E90KhAF rail steel have been carried out. We have established the regularities of non-metallic inclusions distribution over the crystallization zones before and after billets deformation. It was revealed that in crustal zone the main non-metallic inclusions are point oxides, aluminum nitrides, iron silicates (FeO SiO2 ) and alumosilicates (Al2O3 SiO2 ). They were identified in the zone of columnar crystals. In central zone of the billet, manganese sulfides (MnS), manganese silicates (MnO SiO2 ), alumosilicates (Al2O3 SiO2 ), iron silicates (FeO SiO2 ), and point oxides were found. It has been determined that concentration and size of nonmetallic inclusions tend to increase from the surface to central zone of continuously cast billets, which is consistent with generally accepted ideas about mechanisms of billet formation during crystallization. The mechanism of deformation of two-phase silicate non-metallic inclusions and their influence on quality of rail products was disclosed. It is shown that inhomogeneous deformability of complex silicate inclusions aggravates their harmful effect on rail products quality. In this case, additional stresses appear in addition to inclusion-matrix deformation and contact stresses existing at interphase boundaries. This pattern also holds for non-deformed silicate inclusions. Such a distribution of inclusions in the billets volume somewhat reduces their negative effect on rails quality, since near-contact layers of the billet undergo more intense deformation during rolling, and as the axial zone of a billet is approached, deformation rate decreases.
Bibliographic Details
National University of Science and Technology MISiS
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know