Parametric investigation of open-drive scroll expander for micro organic rankine cycle applications
Journal of Thermal Engineering, ISSN: 2148-7847, Vol: 7, Issue: 5, Page: 1110-1120
2021
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Organic Rankine cycles (ORC) are used to produce power from low-temperature heat sources. In the low power output range (<10 kWe), scroll expanders are preferred. However, the performance of the ORC system is dependent on the expander efficiency. The present work focuses on the parametric investigation of the open-drive scroll expander used for micro-organic Rankine cycle. A 5 kWe expander was used and its built-in volume ratio was 3.5. R245fa was used as the working fluid. The analysis was carried out using a well-known semi-empirical model available in the literature. Effect of key parameters such as expansion ratio, shaft speed, and expander inlet temperature on power output and expander efficiency wasevaluated for four different cases. Results showed that, at an inlet pressure of 10 bar, peak efficiency of 58% and 60% was achieved at shaft speeds of 1500 RPM and 2000 RPM respectively. It was also evident that,at higher shaft speeds, the increase in mass flow rate is not sufficient to counter frictional and mechanical losses within the expander. The analysis also indicated that increasing the expander inlet temperature could have a negative impact on the expander efficiency as well as the overall performance of the ORC system, as the thermal energy dissipation is higher at higher inlet temperatures for all cases.
Bibliographic Details
Kare Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know